Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines.
نویسندگان
چکیده
The Steel factor (SF) and its receptor c-Kit play a critical role for various cell types at different levels in the hematopoietic hierarchy. Whether similar or distinct signaling pathways are used upon c-Kit activation in different cell types within the hematopoietic hierarchy is not known. To study c-Kit signaling pathways in the hematopoietic system we have compared c-Kit downstream signaling events in SF-dependent hematopoietic stem cell (HSC)-like cell lines to those of mast cells. Both Erk and protein kinase B (PKB)/Akt are activated by ligand-induced activation of the c-Kit receptor in the HSC-like cell lines. Surprisingly, phosphoinositide-3 (PI-3) kinase inhibitors block not only PKB/Akt activation but also activation of Raf and Erk. SF-induced activation of Ras is not affected by inhibition of PI-3 kinase. In mast cells and other more committed hematopoietic precursors, the activation of Erk by SF is not PI-3 kinase dependent. Our results suggest that a molecular signaling switch occurs during differentiation in the hematopoietic system whereby immature hematopoietic progenitor/stem cells use a PI-3 kinase-sensitive pathway in the activation of both Erk and PKB/Akt, which is then switched upon differentiation to the more commonly described PI-3 kinase-independent mitogen-activated protein (MAP) kinase pathway.
منابع مشابه
Running title: A critical role of PI 3-kinase in hematopoietic stem cells
The Steel Factor (SF) and its receptor c-Kit play a critical role for various cell types at different levels in the hematopoietic hierarchy. Whether similar or distinct signaling pathways are employed upon c-Kit activation in different cell types within the hematopoietic hierarchy is not known. To study c-Kit signaling pathways in the hematopoietic system we have compared c-Kit downstream signa...
متن کاملHMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway.
HMG-CoA reductase inhibitors (statins) have been developed as lipid-lowering drugs and are well established to reduce morbidity and mortality from coronary artery disease. Here we demonstrate that statins potently augment endothelial progenitor cell differentiation in mononuclear cells and CD34-positive hematopoietic stem cells isolated from peripheral blood. Moreover, treatment of mice with st...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2004